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signal sets and coding schemes. The aim is to provide a set of rules that are
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1 - Introduction

The research activity during the three-years period covered by this final re-
port was essentially directed to study the section of a transmission chain
that is allocated between the channel encoder and the channel decoder en-
closed. That is the part of a communication system that properly carries
the information from the sender side to the receiver end. In particular we
have considered the following topics:

1) The problem of the basis waveforms and their generation.
2) Signal sets and group point constellations.
3) Modulation: combined codes and signals.

4} Code concatenation: combination criteria that yield optimal perfor-
mance after complete decoding.

5) Complexity of arithmetical operations in finite fields.

The idea behind was to describe and present a set of rules and conditions

representing the guidelines for the design of signals and codes, the objects
that appear to be the principal components of any communication link.
This subject of course is the central matter of communication theory so
the whole set of available results cannot be certainly summarized in a short
report, neither we have such a presumption. But our limited scope is to
point out some aspects that not always have received the attention that
they deserve. We hope that our little effort will contribute to a better com-
prehension of the fundamental phenomena that regulate the transmission of
the information. ,
Specifically in this report after having recalled the general model of any
communication chain, we successively describe the peculiar functions of the
main building components with reference to the special topics considered in
our previous technical reports. In particular section 3 is dedicated to the
study of basis waveforms and section 4 consider the point constellations. In
section 5 a short description of general combination schemes for coding and
modulation is reported and in section 6 a strategy as well as an algorithm
for the correction of both errors and erasures by means of Reed Solomon
codes are described. Finally in section 7 considerations on the complexity
of the arithimetical operations in finite fields are reported.
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* At last this conclusive report tries to give a hopefully convincing motivation
of our apparently dispersed interest on scattered topics shown by the list
of the research publications. In our opinion we have fractionally reviewed
the wide range of tools that we consider to be the indispensable reference
notions for every designer of transmission systems.

1.1 - The Model

After Shannon’s fundamental ideas about the description of every commu-
nication system which were masterly exposed in his seminal paper A Mathe-
matical theory of Communication, it is definitively accepted that the model
of a transmission chain is composed by the concatenation of functional blocks
that describe either information transformations or the behavior of the phys-
ical supports used to transfer the information.

The basis skeleton consists of the chain source-channel-user, however the
more detailed scheme represented in fig. 1 must be considered for any par-
ticular investigation. In fig. 1 we distinguish the following relevant blocks:

SOURCE - The source produces the information to be transferred. It may
be described abstractly as a scheme characterized by a finite alphabet
A = {a;}}, with an associated distribution probability p{a;}.i =
1... M. However for study purposes of the transmission scheme only.
it is more conveniently viewed as a mechanisin that emits. every T

seconds. one of M cquiprobable symbols from the alphabet AL
Channel encoder - The encoder usually performs two tasks:

- It maps the source symbols into symbols of an alphabet (usually
elements of a finite field' G’ F(¢)) suitable for encoding operations.

- It operates the encoding by adding parity check symbols to the
information symbols according to the error correcting code used.

Modulator - It maps channel encoder symbols into a convenient set of sig-
nals to be sent on the channel. The signals may be either baseband or
translated into a suitable band, in every case they may be described by
means of a finite set of basis waveforms that define a finite dimensional
signal space. The transmitted digital signal may be written as

m(t) = Z Se(t — kT)
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where Sg,(t) are signals of finite duration T selected from a finite set
{5:()}¥, according to a rule governed by a random variable & that
assumes NV possible integer values.

CHANNEL - It is the physical support on which the waveforms are sent.
It is characterized by deterministic physical parameters that allow us
to specify the transformation affecting the waveforms during the prop-
agation and by stochastic parameters that allow us to describe the
non-deterministic transformations that corrupt the conveyed signals.
These unpredictable modifications are called noise and ultimately mo-
tivate all processing both at the transmitting and receiving sides.

Demodulator - It performs the dual operation of the modulator, that is
it converts the received signals into channel code symbols. However
its function is more complex because of the presence of noise: it must
practically solve the theoretical impossible problem of inverting a map
that is not one to one. Therefore the demodulator assignment is to
guess, according to proper strategies, the signal that has been sent
given a received signal corrupted by noise, this inevitably introduces
the errors.

Channel decoder - The decoder has the same objective as the demodu-
lator: it also has to invert a function that was deliberately not one
to one hecause of the introduction of the parity check symbols that
expand the true dimension of the information space. In other words
it attempts to correct the noise introdnced errors.

USER - It is the final destination at which the information is directed.
usually the information is received enco.l. d into the sonrce alphabet
and then it is converted in a meaningful form for the applications.

In this scenario the principal aim is to recover at the user front end the useful
information in the most faithful and economical manner. In mathematical
terms, more frequently, this means to keep the symbol error probability as
small as possible, with constrained resources, i.e. with limited energy, band-
width and complexity of the devices. However, apparently in contradiction
with the last statement, it must be remarked that not always error prob-
ability is the proper measure of quality, other characteristics may be more
important. for example voice or musical sound quality in radio broadcasting.
imperfect image restoration but nevertheless informative in tomography, etc.
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Figure I: Transmission chain model
2 - Channels

The channels are very complex admixture of devices, structures. physical
resources and random components. In general they are a concatenation of
the following objects:

- The modulator which generates and sends the signals on the channel.

- The electrical, optical or acoustical means used to convey the wave-
forms that carry the information properly encoded. This is the channel
properly said in our model on which the signals are corrupted by noise.
interferences and by the behavior of imperfect devices. The noise is
described by the frequency spectrum and the stochastic parameters.

The other sources of impairments have descriptions which may be de-
terministic or stochastic.

- The demodulator usually tries to recover the information signal sent
from the distorted received signal.

The signal space is a n-dimensional vector space specified by a set of n
basis waveforms of finite duration T

{ei()} =
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These waveforms are used to construct the signal set according to the rule

St =Y zwi(t)  1<i< M,

i=1
where the set of vectors
Xi = {1y T2ir. .oy Tni) i=1,...M

is called code for the noisy channel (frequently Gaussian channel) and con-
stitutes a point configuration in a n-dinmensional real vector space.

The channel properly said may be described as a stochastic mechanism
that adds to the signal m(t) unwanted disturbances such as noise v(1). in-
terferences I(¢) and distortions D(t), so that the received signal will be:

r(t) = m(t)y+ v(t) + I(t) + D(1)

Obviously all of these impairments have a convenient mathematical descrip-
tion which may be either exhaustive or incomplete depending on causes that
not always are under the user’s control.

3 - Base waveforms

The design of base signals has been extensively investigated with different
aims in many fields of science, for a good account by one of the majors
contributors see [35]. However the subject accidentally remains at a purely
speculation level and has not received the deserved attention by the com-
munication engineers. This is possibly due to the consolidated experience
in generating sinusoids and typical baseband waveforms, to the existence of
firmly established standards and, why not, to the traditional human conser-
vatism. At last it must be said that also a theoretical argument motivates
this apparently casual choice, because as it was acutely observed by Slepian,
[55], a large number of communication systems can be modeled by linear
transformations that admit sinusoidal functions as eigenfunctions.

Good books have been exclusively dedicated to the subject, see for example
[36], where the design of base signal has received a convenient attention and
a general accurate formulation in mathematical terms. By the way the ac-
tual trend in technological enviromments maintains the supremacy for sine
and cosine signals as well as the definitively unavoidable baseband signals.
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Inconveniences such as intersymbol and co-channel interferences are con-
trolled by using equalization (i.e. post-processing) and filter shaping. In
our opinion this consolidated traditional approach could be integrated by
paying more attention to the design of the base signal set, limiting the in-
trinsic impairments with pre-processing instead of post-processing. In the
following we will try to outline this approach with no pretension of com-
pleteness.

The slightly different point of view that tries to obtain a base signal set
more adapted to the channel is based on the results concerning the problem
of the Maximum transfer of energy with constraints both in

bandwidth and time.

This problem has been variously considered as research subject during the
past. Deep theoretical results appeared in the early sixties in papers by
Slepian and others. It will be now formally stated in order to cmphasize
the relevant mathematical aspects and the lines of possible future studies
towards the feasibility of practical applications.

Let us consider the set § = {s;(¢)}7%, of signals strictly limited in time at
the interval [0. T]. and having finite energy. i.e.

-
/ S0l < <
JU

Let the signals be sent over a linear channel characterized by the linear
transfer function /i(t) so that the output signal y(1}) is

y(t) = /:i'h(l — 7)s(T)dr

The problem is to find the signal s(¢) such that the corresponding output
signal y(t) has the maximum energy concentrated in a limited frequency
interval [-W/2, W/2].

The solution of this problem is proposed in [36], where also useful examples
are developed such as the ideal pass-band filter and the first order Butter-
worth filter. Whereas solutions for the whole class of Butterworth filters has
been reported in {29, 30]. It is interesting to recall some of these results in
order to illustrate what can be expected and the amount of signal processing
required in the desigh of new and efficient signal sets.

The problem is conveniently formnulated as a computation of the norm of an




integral linear operator in a proper Hilbert space. It is well known and it
will be briefly reviewed hereafter, that the square of this norm represents
the maximum of the energy of signals passed through a filter character-
ized by the operator. The most studied operator of this kind is certainly
the bandlimiting operator with kernel 5—';‘—’ whose eigenfunctions, the pro-
late spheroidal functions, are connected to basilar theorems on time and
bandlimited functions [55].

Let J|z|| denote the euclidean norm of a function & in a given Hilbert
space H. let A/(V) denote the norm of a bounded linear operator V acting
in ‘H. therefore (V) is defined as a constrained maximum

N(V) = max ||V
lleli=1

The simplest way to compute this maximum is to look for the maximum
of the square [|[Va|2, therefore VW (V) will result from the solttion of the
classical problem of constrained maxima for positive quadratic forms. It is
well known, [50]. that N(V)iis given by the greatest eigenvalue 0,,,, of the
linear operator VV™, ie.

VV™2 = Opard

where V= denotes the adjoint operator of V and [|[Vz]|? = a,,,..

I 'V is an operator with kernel k(1) associated to a linear filter then
N

gty = Vaelt) = / J(1 = s)r(s)ds

J—

is the filtered signal. The energy of y(1) s
Ioll? = ||V;L-|12:/ yu)%u:///A-(/~.s)A-(r~ whels)al w)dadsdl
R RJRJIR

= = teistartuas

hu—s) = /Rk(t — s)k(t — u)dt

is the kernel of VV™,
The square A (V)2 of the norm of V is given by the maximum eigenvalue
my of h(1) with associated the eigenfunction ¢ (¢} limited in thne, i.c.

1 where

.
/0/l(f—u)',"n(ll)du:ol#'x(f) : (1)

9
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The eigenvalue oy yields the maximum allowance of the energy of any finite
duration signal passed through the filter. The associated eigenfunctions
may become important subjects because they provide an orthonormal basis
{¥i()}7, for any finite set of digital signals. o solve equation (1) is usually
very difficult, however special classes of operators allow us get closed form
solutions by standard techniques. Let us consider operators Q with sym-
metric kernel of the form K(t,s) = h{t — s) whose inverse Q1 is a purely
differential linear operator of the form

R k d
Q'= ga,(s)((—,;)

The eigenfunctions of Q™! are solutions of a linear differential equation.
which in many interesting cases can be explicitly solved. Therefore, since
commuting operators have the same set of eigenfunctions, we can find the
eigenvalues of Q by using the eigenfunctions of the differential operator Q=1
see [29]. A large class of operators, with practical significance, have kernels
h{t) whose Fourier transforms is the reciprocal of an even polynomial, an
interesting example is provided by the second order filters. i.e.

1
L4 2a( f/AV)2 4 (1 = 2a)(f/1F)

H(f)= D<a<i2
It is clarifving to ontline the main computations that explicitly produce the
cigenvalues. As said before the procedure is two steps

i) given H(f) find the general solution of the dilferential equation asso-
ciated to H(f)™":

,

ii) impose this solution to be an eigenfunction of @ to obtain a condition
{usually a transcendental equation), for the cigenvalues and finally
compute the cigenfunctions [29)].

The eigenfunctions for a second order filter satisfy a differential equation of
fourth order

dy  SaniWidlyp 1 (4m2v2)2
_— — e (= = 1) ———— = p
dst 1 —2a ds? o ) (1 - 2a) ¢=0 2)

whose characteristic equation has roots that can be denoted as

2rWX, =2rWX, 27jWY, -27jVY

10




where

and Y =

are real numbers connected by the relation

Y'l - )/2 ~ 2a
’ 1 —2a

and A = «® + (1 - 2(1)(% — 1). It follows that the eigenfunctions of V will
have the general form

2 = o C‘l.‘.li’.\'l

25X WY ~25iWY .
+ese 2 l+(,3"/2 xl\)l+(,.|( 2miW Yt (”
where the four constants ¢;’s are found as a solution of a linear homogencous
system of algebraic equations and o is root of a transcendental equation
obtained by imposing that () is eigenfunction of the integral operator, i.c.
by requiring that

i h(t — s)ilsds = arei{t)

be an identity. Set

7 = pw 1 .
{ =20 X2 4+ ({ - 2a) X!

from the resulting hotmogencons svstem i four unknowns. {a # V2 < 1) we
get a transcendental equation that vields X and in turn @, The equation for
X is very complex. here we report only its asyvinptotic expression for great
values of \':

copene AN 3 |

lg(27WTX)=*~ 1 + v + ()(‘\.2)

showing that we have an infinity of roots hecause of the periodicity of the
tangent function.

It has been shown that the increase of the dimension of the signal space vields
a better use of the channel resources, at the relatively limited increasing in
complexity. We can in fact summarize some of the advantages that can be

deduced from the completion of the above argument

1. the increase of the product 2WT automatically ameliorates both the
co-channel and the intersymbol interference because it allows us 1o use
basis waveforms with better concentrations of energy both in time and
frequency.

11




2. the signal pre-processing allows us to reduce the receiver complexity
with possibly a better use of the computational power.

3. from the forced greater dimension of the signal space we are con-
strained to use large signal sets with the unavoidable condition of
choosing such sets to approximate the Shannon bounds. {43].

From the above considerations we can conclude that basis signals space of
larger dimension should be considered in the future. Moreover it should
be hopefully better if such signals will be matched with the channel char-
acteristics. Here we have resorted some tools that should deserve a better
attention by the designers of data links.

3.1 - Synchronization aspects

Synchronization has always been one of the most criti. 1l issue in any trans-
mission system. The well known problem consists i

Given a finite duration signal (t) transmitted on a channel
of limited bandwidth, therefore from the received signal r(¢) find
the proper time allocation g for (¢ — tg), which maximizes the
correlation

.
/ HE(t + o)t
0

The devices for synchronization acquisition usually are quite complicated
and normally represent an expensive part of any receiving device. The use
of improper basis signals that are seusitive to synchronization problems may
cancel the advantages coming from the believed convenient conditions that
were imposed in their constructiod.

In this context svnchronization capabilities may be evaluated by considering
a set of cross-correlation relations defined as follows.

Given the set of basis waveforms {¢4(1)}}=, of finite duration T, their cross-
correlation functions are defined as

T
dulr) = [ w4 ryt
If the functions ;(t) satisfy equation (1) with the companion operator Q!
time-invariant, then it is immediately seen that &;;{7) is an cigenfunction

associated to the eigenvaluc ;. It follows that, in general, synchronization is
a critical issue for this kind of waveforms and the maximum concentration

12




of energy is not always the best target to be pursuit. However we can
be more optimistic because in certain circumstances we may have positive
return. Let us assume that Q™! is also invariant for time-reverse. Define
the cross-correlation functions as follows

2i5(7) = /_: Ya(t);(t + r)dt

We have

®i5(r) = /_: it — T)p;(t)dt

showing that ®;;(7) is an eigenfunction for both ¢; and a; and therefore is
identically zero, unless i = j. In this last instance it results

(7)) = Adi(T)

and therefore the reference time can be recovered from the zero crosses of
(7).

4 - Point constellations

The Kotelnikov geometrical representation of the signals has assumed a
prominent position in all descriptions of signal carrving information. Many
Shannon heuristic results have been achieved by purely geometric argn-
ments. The flavor of the geometric view has lead to results otherwise un-
reachable.

The representation of signals by points in n-dimensional vector spaces
‘R, permitted almost naturally to consider symmetry, a feature that seems
unavoidable to approach the perft’)rmance guaranteed by the information-
theoretical bounds. Therefore the machinery of group representation and
the intuitive results, pictorially appealing. of n-dimensional geometry are
used to describe and to produce point configurations that present the more
convenient features for generating signal sets.

The geometry of the point constellations as well as associated geometrical
object such as Voronoi (or decision) regions have a role in the computation of
the signal performance over channels with rotational invariance. This topic
has assumed a relevant position in the design of any modulation scheme, far
beyond the initial status when the subject was considered just amateurishly
or without a real engineering concern. The paper [28] is intended to review
the state of the art in this sector. Other surveys appeared before, the most

13
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relevant is [12], and the recent survey [24] is interesting. The analysis of a
large but finite number of regular configurations of points in n-dimensional
spaces, point constellations that usually are associated a transitive group of
symmetry, is a challenging problem.

The consideration of group codes leads to enhance different achievable
gains

1. increased space dimension yields two advantages:

(a) possibility of using more valid basis signals;

(b) gain coming from the greater minimum distance achievable per
dimension;

2. greater is the number of available configurations larger is the number
of constraints that can be accomplished.

In [28] is reported a configuration with 16 points in dimension 4 that shows
a minimum square distance of 1.17 with a gain, normalized with respect to
the space dimension, of 1.65 dB over the 16-QAM in dimension 2. Moreover
a second advantage coming from the four dimensional point constellation is
that the corresponding signals have constant envelope.

5 - Modulation schemes

The ever increasing interest in combined modulation and coding after the
pioncering Ungerboeck’s paper is motivated by the high performance ob-
tained at moderate complexity.

Two combination principle have become prominent:

o Trellis Code Modulation (TCM) is a technique that combines convolu-
tional codes and modulation, the demodulation is executed by mneans
of the Viterbi algorithm that uses a metric induced by the signal con-
stellation;

¢ Block Code Modulation (BCM) is a technique that combines block
codes and modulation, the demodulation is performed by using a eu-
clidean metric induced by the signal constellation, that is a euclidean
distance is computed between the received signal and any possible
transmitted signal.

14




Therefore in order to devise decoding rules affording manageable complex-
ities both codes and modulations must accomplish strong symmetry condi-
tions. Symmetries of geometrical objects are mathematically described by
the action of finite groups of transformations, so henceforth we will assume
that both error correcting codes and multidimensional signal sets have nice
symmetry groups.

5.1 - A general combining principle

Let us briefly describe a general principle for combining error control codes
and modulations. This approach in many circumstances produces signal
sets decodable by algorithms of restrained complexity.

Let us consider a set of L channel error correcting codes C; respectively
with symbols from the alphabet 4;, codeword length n;, cardinality A, and
minimum Hamming distance d;, for i = 1, ..., L. Possibly all codes have
a common codeword length N. Suppose that each code is associated to a
symmetry group which may be

either a group of transformations generating the whole set of code-
words starting from an initial set,

or the code itself has a group structure with a subset of codewords as
generators.

Let us define their external product
Q=Q0C;
i

as the set of L-dimensional vectors with the first entry coming from any
codeword of Cy, the second entry coming from any codeword of C; and so
on until the L-th entry coming from any codeword of C;. To avoid border
effects, if the codeword lengths are different then we must think of unlimited
concatenations of codewords.

Let us consider a group code [AM, n] which is a n-dimensional point config-
uration P generated by the action, of a representation of a group G, on an
initial set of points. Let us consider the coset partition of ¢ with respect
the subgroup H; with transversal 7;:

G= U HHy
tHhen

15




such that the condition | 7; (=] A; | is accomplished. Moreover let us
assume that a chain of subgroups exists

GOHyDHz...D0HL ,

with each transversals 7; satisfying the condition | Til= Al i=1,...L.
Therefore let us consider the hierarchical partition of P induced by the above
described partition of G.

A combined modulation and coding scheme is specified by an
invertible mapping ®, from Q into P, induced by the correspon-
dences

b A — T i=1,...,L

This combining technique is accompanied by a number of theorems that
demonstrate how the coding gain can be achieved through the whole mecha-
nism. In next two sections we briefly recall two special cases, which occupy
a prominent position in the present day applications of these modulation
schemes.

5.2 -TCM

Trellis code niodulation is a generalization of the combining principle first
considered by Ungerboeck. This technique is reminiscent of the convol-
tional encoding, in fact in several important cases it is based on convolu-
tional codes. It can be abstractly described as follows:

Each signal of duration T, to be sent on the chaunnel. is se-

lected from a collection of point sets .V; where each set A s
labeled by means of a block of k, symbols that belongs to an
alphabet of ¢ symbols. In the same manner every point in .;
is labeled by means of of a block of k, symbols from the same
alphabet. The modulator is composed by a shift register having
ks + k, positions; every T seconds k, symbols sequentially enter
the register and a block of k, symbols remains from the previous
step to define the register state. Therefore a block of &, symbols
is used to select a subset .¥; whereas a block of k; symbols is
used to select a point within the subset.
Referring to the set X = |J; X; as a group code, it must have
g*++* points and letting a two stage decomposition induced by
g% cosets, with ¢* elements in each cosets. (Note that in the
Ungerboeck original proposal we had &, = 1 and qg=2).

16

(S TRV




-

5.3 -BCM

Block code modulation has been considered first by Imai and Hirakawa [42),
and by Ginzburg [38], who introduced the following combination principle:

Consider L codes C; = {cl}‘l‘i'l of the same length N, respec-
tively over alphabets of ¢; symbols.
Consider a set § = {5;(t)}M, of M = [I%, ¢: signals of duration
T, therefore each block of L X N code symbols is associated to a
signal of duration N7 obtained by concatenating NV elementary
signals of duration T. Note that S possibly is a group code. At
the j-th time interval the elementary signal 3,(;)(¢) is selected
by means of a function of L variables

u(j) = fleji,e5,..0,¢51)

where the entries cj; are the symbols that occupy the position j
in- the godeword (cy;, €2, . . ., cn;) of the code ;.
The transmitted signal, of duration NT, results

N
5(t) =3 sup(t =l = 1T

J=1

The partition of the group code is used to define the function

fer

5.4 - Demodulation

The transmitted signal, corrupted, by the noise during the propagation on
the channel, will be received as

r(t) = 8(1) + u(t)

At the receiver side the demodulation is a process intended to recover the
signal S(t) from r(t) according to some appropriated decision rule.

Therefore assuming minimum distance detection, the problem will be to find
the useful signal nearest to r(t). Hence the N distances |}r(t)— S(2)|| SiHe
P should be computed and the demodulated signal will correspond to the
minimum one. The number of iecessary comparisons. for picking up the
minimum is ¥, which usually is a huge number that practically excludes
this direct strategy. For this fact, in general, it is necessary to look for

17
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techniques requiring a smaller number of comparisons, possibly yielding a
sub-optimal, but of feasible complexity, detection.

It is immediately seen that one sub-optimal strategy is a stage demodu-
lation as suggested by the modulation process itself. However if we want
greatest advantages, then we must hopefully take into account the actual
group structure. Obviously in this case the resulting demodulation strategy
will not be of general application because it will strongly depend on that
particular group structure.

The above general combining conditions have been considered in [10]
with reference to the special class of generalized group alphabets. The va-
lidity of these combining principles is demonstrated by several interesting
examples showing the coding gain that can be achieved.

6 - Error correcting Codes

Error correcting codes have been extensively studied and a vast bibliogra-
phy exists which is reported in many books, however the old treatise by
MacWilliams and Sloane is still nnsurpassed and its monumental bibliogra-
phy is remained one of the most complete complete until 1977. [47]. After
the limited use of error correcting codes at their beginnines. in the early
sixties. now they play a determinant part in many arcas:

1) deep space communications.
2) compact disc and
3) RE channels for mobile comyrunications.

In most of these applications linear codes have been used because of their
simple mathematical definition. simple encoder structures and well under-
stood performance. Also several non-linear codes present many features that
are reminiscent of the linear property and in many cases have a greater rate
with the same minimum distance.

As initially said, decoding operations are intrinsically hard because their
need of inverting a non-invertible function. Moreover the relations among
different protocol levels contributes to make their position even more diffi-
cult.
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6.1 - Encoding

A linear code over a finite field F is a k-dimensional subspace of a n-
dimensional vector space F*. The characterization of such codes has a
direct impact on the design of the encoder. Let us recall that through the
generating matrix G, the n-dimensional code vector c is generated from a
vector x of k-information bits according to the equation

c=Gx

This encoding algorithm can be advantageously applied to codes of short
length or with few codewords.
Another approach is commonly followed for cyclic codes by describing the
operations in terms of polynomial algebra. Assuming the polynomial repre-
sentation for the codewords, i.e.

n-1 .

Cc=(C), ...\ Cp) & clr)= Z(‘,.’l,"

1=0
therefore a cyclic code is defined by a generating polynomial g(z). The
algorithm to be implemented for the systematic encoding of a cyclic code
performs the following algebraic operations

(o) = 2" ey + o)
where
o r(@)= 2" () mod g(r)
o [{.r)is the polynomial of informatijon bits.

Several classes of non-linear codesd admit encoding procedures that are not
very different from the linear one and in particular circumstances may be
preferable. Let us recall the definition of the class of non-linear codes with
a good internal structure.

Definition 1 - Let us consider a linear code with generating matriz G of
dimension n x ky and a matriz K of dimension n x ky, whose columns can be
considered a subset of the coset leaders for the linear code generated by G.
Therefore a non-linear code of length n and dimension k = ky + ky consists
of the set of codewords

c = Gx1 + kixy)

where:
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- the information vector is decomposed as x = (x) | X3)
- the vector x; indezes the columns of matriz K.

A particular subclass of non-linear codes has been considered in [33] where
many analogies with linear codes have been evidenced and demonstrated.

6.2 - Decoding

Error-correcting codes may have different targets at the receiving front end,
leading to different decoder structures, but more important yielding differ-
ent protocols in order to manage the detected error situations.

In our approach we consider complete decoding only. because the effects of
higher protocol levels are beyond our scopes restrained at the communica-
tion level.

To these aims the symbol crror probability after decoding is the only sig-
nificative code performance figure. Moreover it is by now an accepted fact
that to get either the minimum word error probability or the bit error prob-
ability, normally different decoding strategies must be adopted. It is well
known, see 3], that the Maximum Likelihood criterion minimizes the word
error probability while a more complex criterion, which depends even on the
code. is necessary to minimize the average bit error probability [3].

Let us now briefly recall some decoding criteria that will he applied in the
design of the decoders. Let r denote the received vector.

ML criterion The Maximum Likelihood criterion selects the transmitted

codeword ¢ that corresponds to the minimum conditional probability
given r.
For block codes over the binary symmetric channel the minimum dis-
tance decoding is maximum likely. and for the decoding operation it
can he viewed as a standard array decoding with coset leaders of min-
imum Hamming weight.

UCL criterion The Unique Coset Leader criterion selects the coset leaders
according to the following rule (binary codes):

¢ in cosets where the element of minimum weight is within the
code error correcting capabilities, i.e. its weight is not greater
than [451]. it is taken as coset leaders;

e otherwise take the unique element with all zeros in information
positions.
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Channel | (23,12,7) | (14,7,5) | (16,8,5) | (3,1,3)
ple)
5.5E-3 7E-4 9E-4 L3E-3 | 9.E-5
1E-2 2.2B-3 | 1.14E-2 | 1.75E-2 | 3.E-4
5.9E-2 23E-1{ 3.1E-1| 347E-1| 1.E-2
9.9E-2 59E-1 | 6.58E-1{ T7.1E-1| 2.7E-2

akb=a 10

Table 1: Comparison of code performance over RE channels

An approach that considers communications links simply as carriers without
looking at the use or meaning of the conveyed informatijon practically must
be hit oriented. As a consequence any performance measure nust refer to
the hit error probability of the overall chain. In this case the main purpose is
to minimize the bit error probability after complete decoding. Therefore for
many classes of good and practically interesting codes the UCL decoding
strategy assuntes a definitive position of prominence because it is almost
always casier to implement and gives a smaller BER.

The comparison of error correcting codes with rate of the same order
shows that there is a conservative law in their performance that allows to
foresee code hehaviors and their order. In table 1 some comparison of mea-
sured error probability of codes working on RY channels are reported for
sake of comparison. Here beside the theoretical limit computed for the rep-
etition code (3,3, 3), the residual ctror probability for Golay (23, 12,7} code,
the Preparata (14, 7,5) code and Kerdock (16, 8,5) code are considered.

6.3 - RS encoding

As an example of application of the algorithms that extensively use finite
field arithmetic in particular multiplications, let us consider the co/decoding
of Reed-Solomon codes, which are cyclic codes (satisfying the Singleton
bound). The product of polynomials is used to encode information sym-
bols with operations performed in GF(2™). The RS code (n,k.d) with
n>d>3,k=n-d+1 aund generating polynomial ¢g(z) = [J(x - a')is
considered. This code may correct v errors and v erasures provided that the
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constraint

d-1

2wW+y<d-1 0<v< and 0<y<d-1

is satisfied. For all subsequent discussions we assume that the code is system-
atic, therefore the encoder implements algorithms that perform a division
of I(x) %! by g(z) to produce the remainder r(z) that allows us to write
the codeword in the form:

clx) = 1(x) 2¥ 1 + r(a)

For the description of structures that perform efficiently see [11], while as
regard to the finite field arithmetic that are needed we refer to section 7 of
this report.

6.4 - RS decoding

[u this section we briefly review a decoding algorithun that considers either
erasure and error correction for RS codes because the combined algorithn
seems to have not received a great attention. In fact. the error correction
has been thoroughly studied and the Berlekamp-Massey algorithm repre-
sents the first efficient solution to the problem of the error allocation while
Forney’s error evaluation is an efficient solution in case of non bhinary codes.
Starting from the clever formulation of the ervor correction for cvelic codes
due to Peterson. Gorenstein and Zietler through Berlekamp’s ideas a lot
of algorithms with different implementation have been proposed. for this
reason we do not discuss any-more the problem of ervor correction but we
consider only the situation with erasure at the RS decoder input.
Complete decoding of RS codes with the minimum distance criterion is
practically impossible because the covering radius of these codes are always
d — 1 which means that we have cosets leaders of any weight. Moreover for
codes of reasonable dimension the distribution of the weight of the coset
leader is not even known.
Therefore the UCL decoding is unavoidable but the problem of the correc-
tion of erasures still remains. However resorting to the classical approaches
due to Peterson, Gorenstein and Zierler it is immediately seen that erasure
correction and error correction can be performed independently, in particu-
lar we may correct first the erasures and then apply the Berlekamp-Massey
algorithm to find the errors location and then apply Forney’s algorithm to
find error magnitudes.
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The procedure is based on the computation of syndromes and consists of
the following formal steps:

step 1. compute d — 1 syndromes;

step 2. correct the erasures

step 3. re-compute the d — 1 syndromes;
step 4. correct the errors;

step 5. if the condition 2v + 7 < d — 1 is not accomplished then to decode
the information symbols with no action, the erasures in this case are
substituted with symbols randomly generated.

6.4.1 - Decoding algorithin

Now we describe in detail the first two steps of the above plan. because they
seem to be overlooked by the specialized literature. Next steps instead have
received such a wide attention that we simply refer to the dedicated books.
for example to the excellent [11. 51]. '

As said hefore the approach is classically due to Peterson. Gorenstein and
Zierler and consists in writing down a =t of J — § equations in 2w + =+
unknowns (error magnitude and positions and erasure magnitudes) as a
consequence of the syndromes

Sr=rla). Sy=ra®). ... S = ra?h

where erasures have been substituted with the 0 symbols for simplicity. any
other symbol works as well. The system results

1 S = MXi+VXet . YNt Z b+ Yo Zugs
S = VIX}HYVaXE4 . d YV XZHYoZl .4 Yoy, 2,
Si-t = NXTT XS AN Y 25+ Y, 205
where

- Y denote cither error or erasure magnitude:

- X, = of denote the error position;

23

a3l S - i SRR g s — - > -




- Z; = o' denote the known erasure position.

Let us introduce the syndrome generating polynomial

d-2 »
: st+l~ 1

=0

so that the above system can be written as a polynomial too
Yoojd-l 7. -1
‘ - (ll*)

)—Z)‘ +Z)l+uz | — 7=

Considering 5{z) modulo 297!, we get the simplification

ZY Ay +Z)l+u hr~

Ziz
i=1 '

u

Introduced the polyromial

R(z) = [J(1 - X;z)
i=1
henee maltiplying R(z) by S(:) and taking the result modulo /=1 we get

Fornev's polvnomial for erasure magnitnde estimation

Q(z)= SRz (mod 2pq)

1

Evaluating $2(z) in the roots X7" of B(z) we have

Ny = -V RN
and in conclusion ’
QX"
X, (X
where R’(z) denotes the formal derivative of R(z).
At this point syndromes are updated, thus the Berlekamp-Massey algo-

rithm and again the Forney method are used to evaluate the error magni-
tude.

Y, = -

The correcting algorithms are mathematically described. so for implemen-
tation purposes, it is assumed that any arithmetical operation in the proper
finite field is realized by some specialized device:
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1. addition
2. product
3. powers
-t. fractional powers, i.e. square. cube roots etc.

The circuits that perform these operations are built following some generally
accepted design principles that lead to efficient circuitry. that is 1) modu-
larity. 2) algorithms with small overhead and 3) possibility of large scale
integration (VLSI).

6.5 - Code concatenation

Code concatenation is a flexible scheme that allows to achieve good compro-
mises among available resources. The importance of flexible. efficient and
economic co-decoding schemes needs not to be explained as the use of codes
is becoming more and more important in the design of transmission systems
either for satellite links. broadcast distribution or fiber optical transmission.

It concerns the concatenation of binary linear codes both block and con-
volutional and shows that concatenation is not a commutative operation.
The asvmptotic expression of the resulting bit error probability for severai
interesting pairs of concatenated block codes are also derived - CnEsed
with respect to decoding complexity and decoding delave.

In the paper [31] these aspects of the coveacaition are considered. in
pariicular the problem of threshold. below which codes are useless. ave an-
alyzed as well as the exact error probability evaluation at high channel bit
error probability, conditions that frequentiy happ - when the opegating con-
ditions are severe and error rate of 1072 are common ligure.

7 - Complexity considerations

Error correcting codes with high correcting capabilities require high speed
computations in proper fields in order to perform their tasks in a transparent
way to the users. Operations in finite fields are more reliable than in real
fields because of the lack of rounding. However to get high throughput they
must be executed at high speed, a not easy task if the order of the field is
large.

In [41] a comparison of VLSI architectures of Finite Field multipliers
using different basis representations is clearly presented. ‘Three widely used
multiplication algorithms are analyzed
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e dual basis multiplier due to Berlekamp
¢ normal basis multiplier due to Massey-Omura
o standard basis multiplier due to Scott-Tavares-Peppard

and advantages and disadvantages are clearly illustrated. We think that one
more multiplier scheme that takes into account the structure of irreducible
polynomials associated to base generating elements (standard basis) should
be conveniently considered. This is the basic idea described in [35]. The
algorithin is suitable either for software implementation or VLSI implemen-
tation. It seems very efficient and easy to deal with. the only reservation
concerns the fact that we know only a finite number of such polynomials
and it is unproved whether an infinite number exist or not. IHowever for
many practically interesting cases we have such polynomials.

The structure of any multiplier is recalled in fig. 2. where the difference
among the several algorithms is in the implementation of the XOR-ing block.
Of course algorithms that require dual basis need a pre-conversion of the
input bits.

In [41] referring to the arithmetics in (7 F(2%) suitable for dealing with
standard RS (255.223) codes. with respect to the dual basis multiplier the
irreducible polynomial of degree 8 is chosen to be

R G P e

However in this field is available an irreducible primitive polynomial of the
form

3

e |

that allows us to use the most advantageous algorithm proposed in [35).
As decoding algorithms for RS codes need also efficient evaluations of
powers a short discussion about this problem is in order. This discussion
is even more important hecause in finite tield the inverse computation. or
division, is equivalent to power evaluation. In fact, in G F(q), we have

-1

ol = 12

The question connected with the minimum number of multiplications nec-
essary to compite a power is considered in particular. Two situations are
common:
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DATA-IN

Serial-to-parallel

) DATA-OUT
AND generation XOR "

Serial-to-parallel

DATA-IN

Figure 2: The block diagram of a mnltiplier for linite field elements

o To compute powers .3 with the exponent n known and fixed. there-
fore the optimal power computation rale can be defined one time and
forever;

e To compute powers ;3" with the exponent n unkrown, suboptimal
rules should be used, because to find the optimal one is usually com-
putationally hard.

In [32] we have analyzed the situation and reported some comments on a
long-standing conjecture on the computation of powers.

8 - Conclusions

I this report we have briefly reviewed some points that are basic in the
design of signal sets for communications channels working under burdensome
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conditions. In particular we have evidenced several relevant components
o base signals
¢ point configurations
o combination of coding and modulation
o arithmetical operations in finite fields.

We have seen that signal processing is the tool for pursuing the objectives
promised by the Shannon theory. In other terms digital signal processing
allows us to exchange computational complexity for bandwidth or energy.
Shannou's approach should have hopefully gained insight on the system
performance by dealing independently with single blocks. functionally well
defined. The underlying idea was that local optimization would be easier
and should have lead to an optimal performance of the whole system. Qn the
contrary Ungerboeck has shown that global optimization can produce better
effects than the step by step optimization strategy implicitly suggested by
the Shannon channel model.
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